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The Symmetry of Ground States Under Perturbation 
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We consider a two-body potential which has only periodic ground states 
and prove that  it can be perturbed, by an arbitrarily small perturbation,  
so as to have only aperiodic ground states. 
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1. INTRODUCTION A N D  S T A T E M E N T  OF RESULTS 

It is one of the more significant open problems in the theory of matter to 
derive the observed crystalline structure of low-temperature matter from the 
interactions of the constituent atoms or moleculesJ 11 Using classical mechan- 
ics and a phenomenological two-body interaction potential W(r), one would 
like to show that the ground state of a system of N particles [i.e., the con- 
figuration of positions rj(N) that minimizes the energy E = ~ < j W(r~ - rj)] 
has (approximately) a periodic structure. To be precise, one wants to prove 
that for each fixed j, rj(N) has a limit [j as N--> oe and that the [j lie at the 
vertices of some lattice (not necessarily Bravais). 

To the best of our knowledge, the only published proof  of this sort is 
in Ref. 2, which treats the one-dimensional problem, with Lennard-Jones 
potential W(x)  - ]x 1-12 _ ix ] -6 (see Ref. 3 for related work). 

The purpose of this paper is to demonstrate the extreme sensitivity, of 
the qualitative property of periodicity, to perturbation of the potential (even) 
in one dimension. 

We consider first a one-dimensional interaction potential V (trivial in 
the sense that only nearest neighbors play any effective role--there are no 
"cooperative effects") which gives rise to periodic ground states, and show 
that with an arbitrarily small  perturbation V,, the potential 17, _ V + V, 
has only aperiodic ground states. [We say the perturbation is "arbitrarily 
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smal l "  because V~ and d V d d x  are continuous,  go to zero at infinity, and both  
supx[ V,(x) L and s u P x l d V , ( x ) / d x [  go to zero as e ~ 0.] 

As the details of  the construct ion can be somewhat  burdensome,  we 
suggest the reader  note the following br ief  outline. The per turbat ion  V, 
consists o f  gentle depressions located at  points chosen in an irregular pat tern  
so as to favor  aperiodic ground states. More  specifically (note the role of  the 
sequence {rj}), the depressions are centered at points + (2 tin/21 + rm), m in N. 
It  is proven that  any ground state {)Tj} of  17 must  satisfy Ixj - xj+2~l = 
2 k + r2k or 2 ~ + r2~+1, and by the choice of  {r~} this implies the aperiodicity 
result. As par t  o f  the p r o o f  it is shown that  there are ground states of  I7, 
embedded  in a certain sequence {xj~ 

2. N O T A T I O N  

Throughou t  this paper,  variables denoted j, k, m, or n take values in the 
set, 7 / o f  integers (or some subset if indicated), and K and N take values in 
the set N of  natural  numbers .  

The  number  E is fixed th roughout  the paper ,  and subject only to 
0 < ~ < ~ .  

Let  s~, n /> O, be the coefficients in the 2-adic expansion of  the irrat ional  
oo rt+l ". number  a = ~ , = 1 2  -v("), where v ( n ) =  ~ j = 2 J ,  i.e., s,  = 0 or 1 and 

n=O n ~--- (X. 

Let r~, n /> 0, be defined by 

r2m = --2m~/2 + E ~ Sj2 m-i,  m >1 0 
] = 0  

r2m+l = r2m + ~, m >1 0 

Let a , ,  n r 0, be defined, with values 1 + e/2 only, as follows. For  
n >/ 1 we define a~ recursively by setting al  = 1 - E/2 and,  assuming a ,  
determined for 1 ~< n ~< 2 '~, m >1 0, setting 

a n = an_2m, 2 ~ < n < 2 m+l 

-= a2~ if Sin+ 1 -]- Sin+ 2 = 0 
a2m+Z 

# az~ if sm+l + Sin+2 = 1 

F o r n  ~ < - l a n d m  /> 0 w e d e f i n e  

an = a~i+z+2 '~+x, - 2  m+l < rt < - 2  m 

a-2. ,  = 1 - E/2 
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Let x ,  ~ be defined by 

X n  0 = n n 

a jn / ln l  

We define the function f ,  on ~ by 

+ II, 
L (x )  = tOm 

n = O  

n # O  

Ix I ~< E/2 
,/2 < Ixl 

3. 'THE EXAMPLE 

Consider the pair of two-body potentials V and V, defined by 

+ 7 '  Ix[ < 3/4 
V(x) = - -cos[4~r(Ix ] - 1)1, 3/4 ~< x ~< 5/4 

L0, 5/4 < rxl 

VE(N) = ~ 2-tmm2-tm/21f~([Xl -- 2 t•m -- rm) 
m = 0  

where [t ] denotes the integral part of t >/ 0. Note that V, 17, - V + V,, 
and their first derivatives are continuous (except at the hard core) and go to 
zero at infinity. Also note that supx[V,(x)] = -  V,(1 + E/2)= 40E 2 and 
supx[dV,(x)/dx[ = 40~re, both of which go to zero as ~ v~ 0. 

With the potentials V and 17, in mind, we make the following definitions. 
By a state we mean a finite ordered set p = {Xm, Xm + 1, Xm + 2 .... , X~_ 1, X,}, 

w h e r e x j s R a n d 3 / 4 ~ <  x k - - x j i f k  > j .  
A bond o f  type k, k >1 0 (in a state p = {xj}) is an ordered pair of 

numbers {xm, x,} ( _  p) such that 

2 k + r 2 ~ -  el2 <~ x ~ - X m  <~ 2 ~ + r 2 k + l  + ~/2 

A bond of type k, {Xr,, X,}, is simple if n .>- m + 2 ~. 
Finally, the strength of a bond {Xm, X,} is 17~(X, -- Xm). 
In a (finite) system of particles interacting through V, each particle can 

interact (directly) only with its nearest neighbors, because of the hard core. 
It is therefore evident that the ground state of such a system is unique (up to 
translation) and consists of  the positions of particles evenly spaced at distance 
1 from each other. 

For the remainder of the paper we will only consider states of particles 
interaeting through 17,. Note that now the ground state of  cardinality N 
(i.e., with Nparticles) is not unique ( i fN/>  2). We will show, however, that a 
ground state can be obtained as the ordered set of any N consecutive terms 
in the (two-sided) sequence {x, ~ defined above. Now let tTN = {)Tj.N,... , xJN + u- z} 
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be any sequence (labeled by N) of ground states such that )Tk has a limit ~ 
for each fixed k in 7/as N--+ oo. (For example, )?j = )7 i = xj~ We prove that 
no such sequence {)?k} (labeled by k) is periodic, even though 17~ is an arbitrarily 
small perturbation of V. 

4. P R O O F  OF RESULTS 

We begin with a result concerning the sequence {xg}. 

L e m m a  1. For each k >/0  and n, 

]x~~ k - x . ~  = 2 k +r2~  or 2 ~ +r2~+1 

Proof. An equivalent form of the lemma is the assertion (A): 

(A) In every block D of 2 ~ consecutive terms in the sequence 

{ a , } , n ( O ) = A e  or A ~ +  1 

Here n(D) is the number of  terms in D &va lue  1 + e/2 and Ak -- ~ = o  sj2 k-j. 
We consider three kinds of  block: (1) where n > 0 for all a ,  in the block; (2) 
where n < 0 for all a ,  in the block; (3) where a_ 1 and al are in the block. 
We will first prove (A) for case (1) by induction on k >1 0, where the size of  
the block is 2 k. Assertion (A) holds by inspection for k = 0. Now note that 
the sequence {a~]n > 0} is built up by recursion:-once a "bas ic  b lock"  B~ - 
{al, a2 .... ,a2~} is constructed, Bk+l is obtained by joining to Bk either a 
duplicate of  Bk or ( i fsk+l  + s~+2 = 1) a duplicate except for the last term. 
Assume all blocks of  size 2 m, 0 ~< m ~< k, in Bk satisfy (A). Ifsk + 1 + sk + 2 = 0, 
then all blocks of  size 2% 0 ~< m ~< k, in B~ + 1 satisfy (A), since they are either 
subsets of  one of the two B~'s which make up Bk + 1 or else they overlap the 
junction and are thus " t rans la tes"  of  blocks in the Bk's. The block of size 
2 ~ + ~ is just Bg + 1, and satisfies (A) by construction; in fact, as is easily estab- 
lished using Aj+I = 2Aj + sj+l ,  we have, for all j, the special case of  (A): 

(B) n(Bj) = Aj + sj+~. 

Next we establish the remaining subcase, s~ + 1 + s~ + 2 - 1, as follows. First 
note that the only size 2 m block not covered by the previous argument is 

B~+l.m - {a2~+1-2~'+1,..., a2k+l} 

But from (B) we have n(Bj) = Aj+I - Aj, and so 

/r 

n ( B ; )  = A +I - Am 
/ ' = m  

which implies 
lc 

n(B~+l,m) = n(Bk+l) - - . ~  n(Bj) = Am + s~+2 
3 = m  
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which completes case 1. Next we reduce cases 2 and 3 to case 1. Case 2 
follows from case 1 since each block Cm -= {a-2~, a-2m+l,..., a-I} appears as 
the first half of  Bm+l if Sm+l = 0, and the second half if sm+l = 1. Finally, 
case 3 follows since any block of  type 3, of  size 2 k, can be considered to lie 
in every block 

Dm = {a-2  m-l, a - ~ - 1 + 1  .... .  a2~-1} 

for m /> k + 1. But we can always find an m 1> k +  1 such that s in+ 
Sm + 1 = 0, in which case Dm is a " t rans la te"  of  Bin. This completes the proof  
of  the lemma. 

L e m m a  2. For  any k >t O, ~[=k+~ 2Jbs < bk, where bj = e22 - j 2 - j - !  is 
the maximum value of } V~(x~ - Xm)] if {Xm, X~} is a bond of typej .  

Proof. Elementary. 

L e m m a  3. I f  p is a ground state of  cardinality N, it contains exactly 
N - 2 k bonds of type k for each k t> 0, and they are all simple. 

Proof. We will prove the lemma by induction on the bond type k. 
Assume the lemma holds for all 0 ~< k ~< K. Comparing p to any of the states 
p0 = {xg} of cardinality N, which latter have N - 2 k bonds of type k each 
of maximum possible strength, we see that p must have at least N - 2 K§ 
bonds of type K + 1 since in any case it must have less than N, and by Lemma 
2 the sum total of  the contributions to the energy of p of  all bonds of type k 
for k /> K + 2 cannot make up for the lack of a bond of type K + 1. (This 
argument also proves that k - - - 0  satisfies the lemma, simplicity being 
trivial.) It  remains to show simplicity for k = K + 1. Let {Xm, x~} be a bond 
of type K + 1 in 0. Since N = 2 k is the maximum possible number of  simple, 
type k bonds, and since by assumption there are this number for k = K, 
there must be terms xs and xt in p (possibly s = t) such that (Xm, x~} and 
{xt, x~} are bonds of  type K. But then by geometry, ]xt - xsl < 4e, which 
implies that s = t. This then implies {Xm, X~} is simple, which completes the 
proof. 

P r o p o s i t i o n  1. Any collection p0 of  N consecutive terms in {xj ~ 
constitutes a ground state (with respect to I7,). 

Proof. From Lemma 3 and the fact that there are at most N -  2 k 
simple, type k bonds in any state of  cardinality N, and noting again that for 
any bond {Xm, X~} of type k, V(x~ - xm) is the maximum possible if{xm, x~} 
p0, the proposition follows. 

It  follows from our proofs, in particular from (A), that if a sequence of 
ground states of  increasing cardinality is selected from {xy~ then it will not 
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be periodic in the limit. We will next show this for any convergent sequence 
of ground states. 

Proposition 2. Let t~N = {~Tkjlj = 1, 2,..., N} be any sequence (labeled 
by N) of ground states of cardinality N such that 97k has a limit ff~ as N--+ oo 
for each k in ~. Then {J?~} is not periodic. 

Proof. From the above proofs it follows that 

l~?s-)Ts+2~l = 2  ~ + r 2 k  or 2 k + r 2 ~ + l  

for all k >/0. But then in the block {)70, ~1 .... , ffzk} the proportion of"neares t  
neighbor distances" (i.e., numbers I)7s+1 - xsf, 0 ~< j ~< 2 k - 1) that have 
value 1 + E/2 is either ~ = o  ss2 -s or 2 -~ + ~ = o  ss2 -s, and so approaches 
the irrational number c~ as k -+ oo. This completes the proof. 

5. C O N C L U S I O N  

We have shown that the qualitative property of having periodic ground 
states can be destroyed by an arbitrarily small perturbation of the interaction 
potential. This result is of particular significance since, when examining such 
problems using classical mechanics (the use of which is necessary at present 
considering that even the existence of ground states is still unproven in many- 
body quantum theory) one must use phenomenological potentials which even 
in principle cannot be justified in detail. 

Finally we wish to comment on two features of our method. Because 
only nearest neighbors interact directly through V, we used perturbations V~, 
which perturbed the minimum of V and in fact split the minimum into a 
double minimum. However, if V were longer range (such as the Lennard- 
Jones potential) the particles in a ground state would have nearest neighbors 
closer than the distance to the minimum of the potential, and this is the point 
we would perturb (if we could do the calculation!); the perturbed potential 
would then still have a unique minimum. We should also note that although 
our perturbations V~ are physically of order e, since the energy V~(x) and the 
force dV~(x)/dx are both uniformly of order e, it is a fact that (at least as a 
general method of perturbation) we could not hope to have d ~ V~(x)/dx also 
uniformly of order e. For  example, it follows from the proof in Ref. 2 that 
such a perturbation would not alter the qualitative features of the ground 
states of the Lennard-Jones potential. 
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